Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Meka, Raghu (Ed.)We establish new correlation bounds and pseudorandom generators for a collection of computation models. These models are all natural generalization of structured low-degree polynomials that we did not have correlation bounds for before. In particular: - We construct a PRG for width-2 poly(n)-length branching programs which read d bits at a time with seed length 2^O(√{log n}) ⋅ d²log²(1/ε). This comes quadratically close to optimal dependence in d and log(1/ε). Improving the dependence on n would imply nontrivial PRGs for log n-degree 𝔽₂-polynomials. The previous PRG by Bogdanov, Dvir, Verbin, and Yehudayoff had an exponentially worse dependence on d with seed length of O(dlog n + d2^dlog(1/ε)). - We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against size-n^Ω(log n) AC⁰ circuits with either n^{.99} SYM gates (computing an arbitrary symmetric function) or n^{.49} THR gates (computing an arbitrary linear threshold function). This is a generalization of sparse 𝔽₂-polynomials, which can be simulated by an AC⁰ circuit with one parity gate at the top. Previous work of Servedio and Tan only handled n^{.49} SYM gates or n^{.24} THR gates, and previous work of Lovett and Srinivasan only handled polynomial-size circuits. - We give exponentially small correlation bounds against degree-n^O(1) 𝔽₂-polynomials which are set-multilinear over some arbitrary partition of the input into n^{1-O(1)} parts (noting that at n parts, we recover all low degree polynomials). This vastly generalizes correlation bounds against degree-d polynomials which are set-multilinear over a fixed partition into d blocks, which were established by Bhrushundi, Harsha, Hatami, Kopparty, and Kumar. The common technique behind all of these results is to fortify a hard function with the right type of extractor to obtain stronger correlation bounds for more general models of computation. Although this technique has been used in previous work, they rely on the model simplifying drastically under random restrictions. We view our results as a proof of concept that such fortification can be done even for classes that do not enjoy such behavior.more » « lessFree, publicly-accessible full text available January 1, 2026
-
On the Rational Degree of Boolean Functions and Applications Vishnu Iyer, Siddhartha Jain, Matt Kovacs-Deak, Vinayak M. Kumar, Luke Schaeffer, Daochen Wang, Michael Whitmeyer We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions f, it is conjectured that rdeg(f) is polynomially related to deg(f), where deg(f) is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least deg(f)/2 and monotone functions have rational degree at least sqrt(deg(f)). We observe that both of these lower bounds are tight. In addition, we show that all read-once depth-d Boolean formulae have rational degree at least Ω(deg(f)1/d). Furthermore, we show that almost every Boolean function on n variables has rational degree at least n/2−O(sqrt(n)). In contrast to total functions, we exhibit partial functions that witness unbounded separations between rational and approximate degree, in both directions. As a consequence, we show that for quantum computers, post-selection and bounded-error are incomparable resources in the black-box model.more » « less
-
Ta-Shma, Amnon (Ed.)We initiate the study of generalized AC⁰ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight ≥ k (up to negations of the input bits), which we denote GC⁰(k). The gate set of this class includes biased LTFs like the k-OR (outputs 1 iff ≥ k bits are 1) and k-AND (outputs 0 iff ≥ k bits are 0), and thus can be seen as an interpolation between AC⁰ and TC⁰. We establish a tight multi-switching lemma for GC⁰(k) circuits, which bounds the probability that several depth-2 GC⁰(k) circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-d size-s AC⁰ circuits lifts to depth-d size-s^{.99} GC⁰(.01 log s) circuits with no loss in parameters (other than hidden constants). Our result has the following applications: - Size-2^Ω(n^{1/d}) depth-d GC⁰(Ω(n^{1/d})) circuits do not correlate with parity (extending a result of Håstad (SICOMP, 2014)). - Size-n^Ω(log n) GC⁰(Ω(log² n)) circuits with n^{.249} arbitrary threshold gates or n^{.499} arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). - There is a seed length O((log m)^{d-1}log(m/ε)log log(m)) pseudorandom generator against size-m depth-d GC⁰(log m) circuits, matching the AC⁰ lower bound of Håstad up to a log log m factor (extending a result of Lyu (CCC, 2022)). - Size-m GC⁰(log m) circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).more » « less
An official website of the United States government

Full Text Available